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Obesity is one of risk factors for chronic kidney disease (CKD), but the

precise mechanism involved is unclear. This study characterizes the effect

of obesity-induced glomerular inflammation, oxidative stress, and albumin-

uria in obese rats. Glomerular samples were collected from fatty (ZF) and

lean (ZL) Zucker rats. After 2 months of feeding, body weight and albu-

minuria were significantly increased in ZF rats when compared to ZL rats.

Expression of the inflammatory markers TNF-a and CCR2 was signifi-

cantly increased in the glomeruli of ZF rats. However, expression of IL-6

mRNA was not increased. Analysis of renal pathology showed no

glomerular expansion. As inflammatory and oxidative stress markers are

associated with NF-jB, we evaluated whether NF-jB activation was

increased in the glomeruli of mice on a high-fat diet. Immunohistochem-

istry showed increased NF-jB activation in the glomeruli when transgenic

mice overexpressing an NF-jB-dependent enhanced green fluorescent pro-

tein were fed with a high-fat diet. These results suggest that obesity of only

2 months duration can cause albuminuria, due to increased inflammation

or oxidative stress, but may not be long enough to develop renal pathologi-

cal changes.

Obesity is one of the common causes of chronic kidney

disease (CKD), independent of glycemic control [1].

Recent studies suggest that body mass index is associ-

ated with the incidence of CKD [2]. We have shown that

obesity-induced abnormal metabolites may play a sig-

nificant role in increasing vascular endothelial growth

factor (VEGF) and subsequently the development of

CKD [3]. Furthermore, insulin resistance observed in

obesity has been associated with cardiovascular disease

[4]. These results suggest that obesity-induced abnormal

metabolites may accelerate the development of CKD.

Albuminuria is an early abnormal feature of CKD

and has been recognized as a marker of systemic

endothelial dysfunction [5]. Thus, albuminuria could

reflect worsening renal function, cardiovascular dis-

ease, and increased risk of mortality [6]. Data from

the Prevention of Renal and Vascular End Stage

Disease (PREVEND) study clearly show that

increased albuminuria not only follows overt diabetic

kidney disease, but is also a marker of the progres-

sion of diabetes [7]. We have shown that increases in

inflammation and oxidative stress are recognized in

the glomerular endothelial cells in both diabetes and

obesity-induced insulin resistance states [3]. Recent

studies suggest that inflammatory markers are closely

related to endothelial dysfunction, which has been
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shown to indicate the development of diabetes

[8–10].
This study characterized the mechanism of albumin-

uria caused by inflammation and oxidative stress in

the glomeruli of obese and insulin-resistant rats.

Research design and methods

Animal studies

All animal protocols were approved by the Kindai Univer-

sity and Joslin Diabetes Center’s Animal Care Committee

in accordance with the National Institutes of Health guide-

lines. We used age-matched male ZF, lean ZL rats, and

C57BL/6J mice (Shimizu, Kyoto, Japan). To determine

nuclear factor jΒ (NF-jΒ) activation in the glomeruli, we

used NF-jΒ-dependent enhanced green fluorescent protein

(GFP) transgenic mice (cis-NF-jΒEGFP) [11]. These mice

were produced as described previously and kindly provided

by Steve Shoelson and Jongsoon Lee at the Joslin Diabetes

Center. Obesity and insulin-resistant states were induced in

8-week-C57BL/6J and 8-week-cis-NF-jΒEGFP mice by feed-

ing them a high-fat diet (45% and 42% from fat; Shimizu,

Kyoto, Japan and Harlan Tekland, Indianapolis, IN, USA,

respectively) or a normal diet for 2 months. Eight-week-

cis-NF-jΒEGFP mice were the same group as published in

our previous study [11].

Isolation of glomeruli

Rat glomeruli were isolated from the renal cortex by the

sieving method as described previously [3].

DNA fragmentation analysis

DNA fragmentation was measured by quantitation of

cytosolic oligonucleosome-bound DNA using an ELISA,

according to the manufacturer’s instructions (Roche Diag-

nostics, Indianapolis, IN, USA).

Measurement of urinary albumin

Albuminuria was measured by Nephrat or Albuwell (Exo-

cell Inc., Philadelphia, PA, USA) using 24-h urine collec-

tion samples from animals housed in individual metabolic

cages.

Serum triglyceride, serum total cholesterol, and

plasma insulin

Serum triglyceride and serum total cholesterol were mea-

sured by LabAssay Triglyceride (Wako Chemicals, Rich-

mond, VA, USA) and by LabAssay Cholesterol (Wako

Chemicals, Richmond, VA, USA), respectively. Plasma

insulin was measured by Ultra Sensitive Rat Insulin ELISA

Kit (Morinaga Institute of Biological Science, Yokohama,

Japan).

Real-time PCR analysis

Total RNA was isolated from the glomeruli using an

RNAeasy microcolumn with DNase treatment (Qiagen,

Valencia, CA, USA). Quantification of RNA was performed

with the NanoDrop ND-1000 spectrophotometer (Thermo

Scientific, Wilmington, DE, USA). cDNA was synthesized

using Superscript III reverse transcriptase (Invitrogen, Carls-

bad, CA, USA). mRNA expression in the glomeruli was

evaluated by a SYBR green procedure (Applied Biosystems,

Foster City, CA, USA). Amplification and detection were

performed using the Step One Plus system (Applied Biosys-

tems). Expression levels were normalized to levels of

GAPDH. PCR primers were as follows: TNF-a
AAATGGGCTCCCTCTCATCAGTTC, TCTGCTTGGT

TTGCTACGAC; IL-6 TCCTACCCCAACTTCCAATG

CTC, TTGGATGGTCTTGGTCCTTAGCC; CCR2 CTTG

TGGCCCTTATTTTCCA, GAATTCCTGGAAGGTGGT

CA; and GAPDH GTATTGGGCGCCTGGTCACC, CG

CTCCTGGAAGATGGTGATGG.

Histological study

Kidney samples for light microscopy analysis were fixed in

4% paraformaldehyde phosphate buffer. Kidney sections

(2 lm) were stained with periodic acid–Schiff. Glomeruli

were digitally photographed, and the images were imported

into IMAGEJ software (National Institutes of Health,

Bethesda, MD, USA; https://imagej.nih.gov/ij/) and ana-

lyzed morphometrically. Dissected glomeruli from obese

and control cis-NF-jΒEGFP mice were fixed in acetone and

observed by digital fluorescence microscopy.

Data analysis

Data are expressed as mean � SD. Comparisons among

more than two groups were performed by one-way

ANOVA, followed by post hoc analysis with paired or

unpaired t-test to evaluate statistical significance. All analy-

ses were performed using StatView (SAS Institute, Cary,

CA, USA). Statistical significance was defined as P < 0.05.

Results

Physiological characteristics of experimental

groups

Body weight was significantly increased in ZF rats by

1.6 � 0.1-fold when compared to ZL rats. Like ZF

rats, mice fed with high-fat chow showed increases in
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body weight when compared to mice fed with normal

chow (Tables 1 and 2, P < 0.05). Plasma triglyceride

and cholesterol levels in ZF rats were elevated by

7.3 � 4.6-fold and 1.3 � 0.6-fold, respectively, com-

pared to ZL rats (P < 0.05). However, there were no

significant statistical differences in the levels of plasma

insulin (Table 3). Initially, there were no significant

differences in albuminuria between ZF and ZL rats

(Fig. 1A). However, after 2 months of feeding, albu-

minuria was significantly increased in ZF rats by

30 � 20-fold when compared to ZL rats (Fig. 1B,

P < 0.05). Like rat experiments, there are no signifi-

cant differences in albuminuria in mice, but when mice

fed with high-fat chow after 5 months significantly

increased in albuminuria by 2.5 � 1.3-fold when com-

pared to normal chow (Fig. 1C,D, P < 0.05).

Glomerular inflammation in experimental groups

Inflammatory markers were characterized in the glo-

meruli with the induction of obesity. Expression of

TNF-a mRNA and CCR2 mRNA was elevated by

3.3 � 2.4- and 3.1 � 1.5-fold in the glomeruli of ZF

rats, respectively, when compared with ZL rats

(Fig. 2A,B, P < 0.05). In contrast, expression of IL-6

mRNA did not increase in the glomeruli of ZF rats

after 2 months of feeding (Fig. 2C), which is consis-

tent with our previous report [11].

Renal histology in experimental groups

We next performed morphometric analysis of glomeru-

lar surface area. There were no statistically significant

differences in the glomerular surface area between ZL

and ZF rats (Fig. 3; ZL, 8820 � 1240 lm2; ZF,

9612 � 1384 lm2, respectively).

Immunohistochemistry of NF-jB activation in the

glomeruli of mice fed a high-fat diet

As inflammation and oxidative stress can activate NF-

jB in obesity and the insulin-resistant state [12], we

examined changes in NF-jB activity in the glomeruli

of cis-NF-jBEGFP mice. GFP-positive areas were

detected in the glomeruli of mice fed a high-fat diet

for 2 months, indicating NF-jB activation (Fig. 4).

Discussion

This study reports for the first time that obesity and

the insulin-resistant state increase albuminuria, which

is correlated with inflammation or oxidative stress.

However, 2 months of metabolic abnormality was not

enough to cause glomerular pathological changes. Pre-

vious reports have primarily focused on the activation

of inflammation and oxidative stress by diabetes alone.

Several studies have associated changes in inflamma-

tion and oxidative stress with albuminuria in CKD

[13,14]. However, it has not been reported that inflam-

mation and oxidative stress can increase albuminuria,

in the absence of renal pathological changes.

Quantitative PCR data indicated elevation of TNF-

a and CCR2, but not IL-6 in the glomeruli of obese

animals. Previously, we have reported that levels of

TNF-a and IL-6 mRNA are increased by diabetes, but

not by insulin resistance in retina [11]. Also, it is

reported that obesity-induced increases in IL-6 did not

correlate with the incidence rate of acute kidney injury,

while oxidative stress marker plasma F2-isoprostanes

was increased in those patients [15]. Expression of

IL-6 mRNA was mainly recognized in moderate

mesangial expansion area and the interstitial expres-

sion correlated with the degree of interstitial damages

in diabetic kidney disease (DKD) [16]. Thus, increases

in IL-6 level could be recognized in the kidney that

was damaged to some extent by insulin-resistant state

Table 1. General characteristics of the rat experimental groups.

ZL ZF

Number 6 4

Initial body weight 169 � 13 217 � 7*

Body weight at 2 months 303 � 17 482 � 10*

ZL, Zucker lean rats; ZF, Zucker fatty rats. Data are expressed as

means � SD. *P < 0.05 versus ZL rats.

Table 2. General characteristics of the mice experimental groups.

Normal chow High fat

Number 6 4

Initial body weight 25 � 2 25 � 2

Body weight after 5 months 34 � 4 46 � 2*

Data are expressed as means � SD. *P < 0.05 versus normal

chow.

Table 3. Serum triglyceride, serum total cholesterol, and plasma

insulin.

ZL ZF

Triglyceride 28.1 � 14.3 195.7 � 23.6*

Total cholesterol 51.2 � 5.9 77.5 � 7.0*

Insulin 21.9 � 0.5 19.9 � 0.5

ZL, Zucker lean rats; ZF, Zucker fatty rats. Data are expressed as

means � SD. *P < 0.05 versus ZL rats.
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or diabetes. These findings could support the expres-

sion discrepancy between TNF-a and IL-6 mRNA in

our study.

Our data suggest that obesity could increase TNF-a
and CCR2 in the kidney, when hyperinsulinemia is not

present. Recent studies clearly show that TNF-a and

its receptors, TNF receptors 1 and 2, are correlated

with estimated glomerular filtration rate [17]. Interest-

ingly, these inflammatory markers are significantly

increased in CKD patients without diabetes [18].

The mechanism for obesity-induced proteinuria

appears to be via TNF-a activation. Among the

inflammatory cytokines that were activated in the glo-

meruli, TNF-a appears to be the primary contributor

to increased proteinuria. Previous studies indicated

that TNF-a could change membrane permeability [19]

resulting in proteinuria [20]. Clinically, inhibition of

TNF-a using the TNF-a neutralizing antibody, tocili-

zumab, results in decreased proteinuria.

Some reports have suggested that high-fat feeding

over a prolonged time could develop mesangial expan-

sion [21]. However, glomerular histological changes

were not recognized in our study. Our observation per-

iod was only 2 months, while previous studies that
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showed high-fat diet-induced renal injuries were more

than 3 months. Furthermore, they used the diet 60%

from fat, while 42% in our study.

It is also possible that monocyte chemoattractant

protein (MCP)-1/CCR2 pathway can be a pivotal role

in developing DKD [22,23]. Furthermore, our previous

study directly proved CCR2 contributed to the pro-

gression of DKD using CCR2 antagonist,

propagermanium [24]. Recent study using CCR2 inhi-

bitor, CCX140-B and being excluded advanced

nephropathy showed renoprotective effects, reducing

albuminuria in DKD patients [25]. Our results support

the idea that inflammatory cytokines may be elevated

before developing renal pathological changes and

inhibiting cytokine action as a possible therapeutic tar-

get could improve and prevent DKD.

Our previous work suggested that PKC activation

selectively inhibits insulin/insulin receptor (IRS)1 sig-

naling, increasing inflammation and oxidative stress in

the glomerulus of ZF rats [3]. Here, we demonstrate

that obesity, without diabetes, induced by a high-fat

diet was able to activate NF-jB in the glomerulus. In

addition, increased TNF-a in the glomerulus can

induce albuminuria after 2 months of obesity in ZF

rats. Activation of the tyrosine phosphatase, Src

homology-domain-containing phosphatase-1 (SHP-1),

which is increased by diabetes and PKC-d, causes

VEGF resistance-induced podocyte apoptosis [26].

Mechanistically, this pathway is independent of inflam-

mation, oxidative stress, and NF-jB.
In summary, obesity can elevate the inflammatory

cytokine, TNF-a and CCR2, resulting in increases in

albuminuria. Moreover, obesity-activated NF-jB is

correlated with inflammation and oxidative stress in

the glomerulus. However, 2 months of disease dura-

tion may not be long enough to develop renal patho-

logical changes. Further understanding of the NF-jB,
TNF-a, and CCR2 pathways could lead to effective

interventions for obesity-induced CKD.
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